Code No: R15A0013 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) I B.Tech I Semester Supplementary Examinations, February 2021 Engineering Chemistry (ECE_CSE & IT)

Roll No													

Time: 2 hours 30 min

Max. Marks: 75

Answer Any **Five** Questions All Questions carries equal marks.

- 1 Write the construction and working of Calomel electrode with neat diagram and **[15M]** proper reactions involved in it.
- 2 Write a brief note on construction, working and reactions involved in lead acid [15M] battery.
- 3 Discuss the chemical and electrochemical theories of corrosion. [15M]
- 4 a. Write the procedure involved in Electroplating of Cu. [7M]
 - b. Define hot dipping and explain the process of Galvanisation using neat [8M]
 diagram
- 5 Write a detailed note on various types of Polymerization. [15M]
- 6 Write a short note on following properties of lubricants [15M]
 - i. Cloud point ii. Pour point iii. Flash and fire points.
- How hard water is softened by Ion exchange process? Explain in detail with neat [15M] diagram.
- 8 Write the steps involved in refining of petroleum with neat sketch. [15M]

R15

Code No: R15A0302 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) I B.Tech I Semester Supplementary Examinations, February 2021 Engineering Drawing

(ECE. CSE & IT)

	-				<u>,</u> .		.)							
		Roll No)											
Time: 2	2 hours 30	min	•		· ·	•		•	Max.	. Marks: 75	,)			
Answer Any Five Questions														
All Questions carries equal marks.														

1	Construct	a parabola v	when the	distar	ice bet	tween th	ne focus	s and d	irectrix	is	[15M]			
•	30mm.Draw the tangent and normal at the any point on the curve													
2	Draw a h	ypocycloid o	of a circ	le of	40 mi	m diam	eter w	hich ro	olls insi	de another	[15M]			
	circle of 2	00 mm diam	neter for	one re	evoluti	ion. Dra	aw a n	ormal	and tan	gent at any				
	point on it													
2											[1 /]]			
3	Drow th	projections	of the f	llowi	na nai	nto on o		on rofe	rongo 1	ino				
	(i) $\mathbf{P} = \mathbf{A} \mathbf{O} \mathbf{I}$	m below H	D and in	the V	ng por D		comm	ion tere		me.				
	(i) 1, 401 (ii) 0, 35	mm behind	VP and i	in the	I HP									
	(ii) $Q, 33$ (iii) $R, 25$	5 mm below	HP and (25 mm	n in fro	ont of V	Έ							
	(iv) S. 30	mm behind	VP and	45 mr	n belo	w HP.	-							
	(v). Point	A lies in the	H.P. an	d 22 r	nm in	front of	the V.	P.						
	(vi). Poin	t B lies 20 m	ım behin	d the	V.P. a	nd 32 n	nm abov	ve the l	H.P.					
	(vii). Poi	nt C lies 32 r	nm belo	w the	H.P. a	nd 22 n	nm in fi	ront of	V.P.					
4	The project	tions of the	ends of a	a line	EF are	on the	same p	projecto	or. The	end E is 10	[15M]			
	mm above	HP and 15	mm in f	ront c	of VP.	The en	d F is 3	35 mm	above	HP and 45				
	mm in fro	nt of VP. D	raw the	proje	ctions.	. Find t	he true	length	ı, true i	nclinations				
	and traces													
5	A Hexago	nal lamina d	of 20 mi	n side	e rests	on one	e of its	corner	rs on th	e HP. The	[15M]			
	diagonal p	assing throu	igh this	corne	r is in	clined a	ut 45 ⁰ t	to the I	HP. The	e lamina is				
	then rotate	d through 9	0^0 such t	hat th	e top y	view of	this dia	agonal i	is perpe	ndicular to				
	the VP and	d the surface	e is still	incline	ed 45 ⁰	to the	HP. Dr	aw the	project	tions of the				
-	lamina			_										
6	Draw the t	op and front	views o	of a ree	ctangu	lar pyra	mid of	sides of	of base	40X50 mm	[15M]			
	and height	/0 mm whe	n it lies	on on	e of its	s larger	taces o	on HP.7	The long	ger edge of				
	the base of	t the triangul	lar face I	yıng o	on HP	1s incli	ned at 6	b0° to \	VP in th	ie top view				
	with the ap	bex of the py	ramid be	eing n	earer to	0 VP.								

- 7 A hollow cylinder of base 50 mm diameter and axis 70 mm long has a square hole [15M] of 20 mm side. The axis of the cylinder and the hole coincide. Draw the three possible ways of representing the isometric projection of the solid
- 8 Draw Front view, top view and side view of a given object(All dimensions are in [15M] mm)

Code No: R15A0301 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) I B.Tech I Semester Supplementary Examinations, February 2021 Engineering Mechanics

Time: 2 hours 30 min

Max. Marks: 75

Answer Any **Five** Questions All Questions carries equal marks.

1(a) Find the resultant of the force acting on a particle P as shown in **Fig:1**

[5+10M]

Fig:1

- (b) Three collinear horizontal forces of magnitude 150N, 450N and 300N are acting On a rigid body. Determine the resultant of forces when (i) all the forces are acting in the same direction; (ii) the force of 300N act in the same direction.
- 2(a) Explain how will you reduce the system of coplanar, non-concurrent forces to a **[8+7M]** force and a couple?
- (b) What do you understand by the term 'Couple'? Discuss the characteristics of a couple
- 3 Two smooth cylinders with diameters 250 mm and 400 mm respectively are [15M] kept

in a groove with slanting surfaces making angles 600 and 300 as shown in the **Figure 2**. Determine the reactions at contact points A, B and C.

- 4 An effort of 200N is required just to move a certain body up an inclined plane [15M] of angle 15⁰, the force acting parallel to the plane. If the angle of inclination of the plane is made 20⁰, the effort, required, again applied parallel to the plane, is found to be 230N.Find the weight of body and the Co-efficient of friction
- 5 Locate the centroid of an I-section about X-X axis as shown in the **figure-3**. [15M]

6 Using the analytical Method, determine the centre of gravity of the plane lamina [15M] of given Fig:4

Fig:4 7 Find area moment of inertia of L section shown in Figure about X axis

[15M]

8 Two bodies of weight 60N and 40N are connected to the two ends of alight in [15M] extensible string. The string is passing over a smooth pulley. Determine:
(i) the acceleration of the system
(ii) the tension in the string. Take g=9.8m/s²

Code No: R15A0011 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) I B.Tech I Semester Supplementary Examinations, February 2021 Engineering Physics-I (ME, ECE, CSE, IT & AE)

Roll No													

Time: 2 hours 30 min

Max. Marks: 75

R15

Answer Any **Five** Questions All Questions carries equal marks. ****

- 1 Discuss the phenomenon of interference in thin films by reflected light. Obtain the **[15M]** conditions for maxima and minima.
- 2 Derive an expression for the intensity distribution due to diffraction at a single slit. [15M]
- 3 Explain principle, construction and working of Semiconductor laser with the help **[15M]** of Energy Level Diagram.
- 4 Define Numerical Aperture and Acceptance angle. Derive the expressions for **[15M]** them.
- 5 Derive an expression for Schrodinger time independent wave equation. [15M]
- 6 Describe Davisson and Germer experiment to verify the wave nature of matter. [15M]
- 7 a) Compare the highlights of M-B, F-D & B-E distributions. [10M]
 b) Explain Formation of energy bands in solids by using Band theory of solids.
- 8 Explain the principle, construction and working of solar cell with necessary **[15M]** diagrams and mention its characteristics.

Code No: R15A0021 R15 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) I B.Tech I Semester Supplementary Examinations, February 2021 Mathematics-I (ME, ECE, CSE, IT & AE) Roll No

Time: 2 hours 30 min

Max. Marks: 75

Answer Any **Five** Questions All Questions carries equal marks.

1 a) Reduce the given matrix into normal form and hence find the rank $\begin{pmatrix} 2 & 3 & -2 & 5 & 1 \\ 3 & -1 & 2 & 0 & 4 \\ 4 & -5 & 6 & -5 & 7 \end{pmatrix}$.

b) For a matrix
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$
 find the Eigen values of $3A^3 + 5A^2 - 6A + 2I$.

[8M+7M]

2. If $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ verify Cayley-Hamilton theorem. Find A^{-1} using Cayley-Hamilton theorem. [15M]

3. a) Prove that
$$\frac{\pi}{6} + \frac{1}{5\sqrt{3}} < \sin^{-1}\left(\frac{3}{5}\right) < \frac{\pi}{6} + \frac{1}{8}$$

b) Find minimum values of $x^2 + y^2 + z^2$ if x + y + z = 3a. [8M+7M]

4.a) Verify Rolle's Theorem for $log\left[\frac{x^2+ab}{x(a+b)}\right]$ on [a,b], b > a > 0.

b) Using Taylor's series expand $f(x, y) = e^{y} \log (1 + x)$ in powers of x and y. [7M+8M]

5. a) Solve
$$x^3 \sec^2 y \frac{dy}{dx} + 3x^2 \tan y = \cos x$$
.

b) If the surroundings are maintained at 30°C and the temperature of body cools from 80°C to 60°C in 12 minutes, find the temperature of body after 24 minutes. [7M+8M]

6 a) Find the orthogonal Trajectory of the family of $ay^2 = x^3$.

- b) If the population is increasing exponentially at the rate of 2% per year. What will be the percentage increase over a period of 10 years? [8M+7M]
- 7. Apply the method of variation of parameters to solve $\frac{d^2y}{dx^2} + y = tanx$. [15M]

8. Solve $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = e^{-t}sint, x(0) = 0, x'(0) = 1$ by using Laplace Transform. [15M]

R15 Code No: R15A0501 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) I B.Tech I Semester Supplementary Examinations, February 2021 Computer Programming with C (ME, ECE, CSE, IT & AE) Roll No

Time:	Fime: 2 hours 30 min Max. M								Mar	ks: 75							
All Questions carries equal marks.																	

1	a) Sketch the structure of C program and explain.											[7M]					
	b) Elucidate how do you create and run a C program											[8M]					
2	Illustrate the standard data types supported by C language.								[15M]								
3	a) Distinguish between actual and formal parameters with an example.									[7M]							
	b) Differentiate between call by value and call by reference with an example										[8M]						
4	Describe the following with examples:										[15M]						
	i. Function definition																
	ii. Function call																
		iii.	Func	tion dec	larati	ion.											
5	Define	array	. Explai	in the de	clara	ation	and	initia	lizat	ion (of or	e dir	nens	siona	al an	d two	[15M]
	dimensi	ional	array w	vith an e	xamp	ole											
6	a) Expl	ain de	eclaratio	on and in	nitial	izati	on of	arra	y of	strin	igs.						[7M]
	b) Develop a C program to find whether a given string is palindrome or not. [8]											[8M]					
7	Briefly	expla	ain the c	concept	of fu	nctio	ons re	turni	ing p	ointe	ers w	vith e	exam	ple.			[15M]
8	Exempl	lify tl	he follo	wing: i.	Self	f-refe	erent	ial st	ructu	ıre i	i. Ty	pede	ef de	eclar	ration	ns iii.	[15M]
	Enumer	ratior	ns, iv. U	nion													
